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Abstract

Background: Several studies have explored the predictive performance of machine learning–based breast cancer risk prediction
models and have shown controversial conclusions. Thus, the performance of the current machine learning–based breast cancer
risk prediction models and their benefits and weakness need to be evaluated for the future development of feasible and efficient
risk prediction models.

Objective: The aim of this review was to assess the performance and the clinical feasibility of the currently available machine
learning–based breast cancer risk prediction models.

Methods: We searched for papers published until June 9, 2021, on machine learning–based breast cancer risk prediction models
in PubMed, Embase, and Web of Science. Studies describing the development or validation models for predicting future breast
cancer risk were included. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias
and the clinical applicability of the included studies. The pooled area under the curve (AUC) was calculated using the DerSimonian
and Laird random-effects model.

Results: A total of 8 studies with 10 data sets were included. Neural network was the most common machine learning method
for the development of breast cancer risk prediction models. The pooled AUC of the machine learning–based optimal risk
prediction model reported in each study was 0.73 (95% CI 0.66-0.80; approximate 95% prediction interval 0.56-0.96), with a

high level of heterogeneity between studies (Q=576.07, I2=98.44%; P<.001). The results of head-to-head comparison of the
performance difference between the 2 types of models trained by the same data set showed that machine learning models had a
slightly higher advantage than traditional risk factor–based models in predicting future breast cancer risk. The pooled AUC of
the neural network–based risk prediction model was higher than that of the nonneural network–based optimal risk prediction
model (0.71 vs 0.68, respectively). Subgroup analysis showed that the incorporation of imaging features in risk models resulted
in a higher pooled AUC than the nonincorporation of imaging features in risk models (0.73 vs 0.61; Pheterogeneity=.001, respectively).
The PROBAST analysis indicated that many machine learning models had high risk of bias and poorly reported calibration
analysis.

Conclusions: Our review shows that the current machine learning–based breast cancer risk prediction models have some
technical pitfalls and that their clinical feasibility and reliability are unsatisfactory.
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Introduction

Of all the cancers worldwide among women, breast cancer
shows the highest incidence and mortality [1]. Early access to
effective diagnostic and treatment services after breast cancer
screening could have reduced breast cancer mortality by
25%-40% over the last several decades [2,3]. The development
and implementation of risk-based breast cancer control and
prevention strategies can have great potential benefits and
important public health implications. Moreover, risk-based
breast cancer control and prevention strategy is more effective
and efficient than conventional screening based on model
evaluation [4,5]. A prerequisite for the implementation of
personalized risk-adapted screening intervals is accurate breast
cancer risk assessment [6]. Models with high sensitivity and
specificity can enable screening to target more elaborate efforts
for high-risk groups while minimizing overtreatment for the
rest. Currently, the US breast cancer screening guidelines use
breast cancer risk assessments to inform the clinical course,
thereby targeting the high-risk population by earlier detection
and lesser screening harms (eg, false-positive results,
overdiagnosis, overtreatment, increased patient anxiety) [7].
Nevertheless, there is no standardized approach for office-based
breast cancer risk assessment worldwide.

Traditional risk factor–based models such as Gail, BRCAPRO,
Breast Cancer Surveillance Consortium, Claus, and
Tyrer-Cuzick models have been well-validated and used
commonly in clinical practice, but these models developed by
logistic regression or Cox regression or those presented as risk
scoring systems have low discrimination accuracy with the area
under the receiver operating characteristic curve (AUC) between
0.53 and 0.64 [8-12] and these models show bias when applied
to minority populations, accompanied by great variance in terms
of the patients included, methods of development, predictors,
outcomes, and presentations [13-15]. Other risk prediction
models that incorporated genetic risk factors were also only
best suited for specific clinical scenarios and may have limited
applicability in certain types of patients [16]. Recently, with
the cross research between artificial intelligence and medicine,
the development and validation of breast cancer risk prediction
models based on machine learning algorithms have been the
current research focus. Machine learning algorithms provide an
alternative approach to standard prediction modelling, which
may address the current limitations and improve the prediction
accuracy of breast cancer susceptibility [17,18]. Mammography
is the most commonly used method for breast cancer screening
or early detection. Machine learning artificial intelligence
models suggest that mammographic images contain risk
indicators and germline genetic data that can be used to improve
and strengthen the existing risk prediction models [19]. Some
studies claim that machine learning–based breast cancer risk
prediction models are better than regression method–based
models [7,20], but 1 study reported the opposite result [21].
These controversial conclusions prompted us to review the

performance and the weaknesses of machine learning–based
breast cancer risk prediction models. Therefore, this systematic
review and meta-analysis aims to assess the performance and
clinical feasibility of the currently available machine
learning–based breast cancer risk prediction models.

Methods

Study Protocol
This systematic review and meta-analysis was performed
according to the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analysis) statement [22], the
Checklist for Critical Appraisal and Data Extraction for
Systematic Reviews of Prediction Modeling Studies, and the
prediction model performance guidelines [23,24].

Literature Search Strategy
Papers on machine learning–based breast cancer risk prediction
models were searched in PubMed, Embase, and Web of Science
by using the terms “machine learning OR deep learning” AND
“mammary OR breast cancer OR carcinoma OR tumor OR
neoplasm” AND “risk assessment OR risk prediction” published
until June 9, 2021, and limited to papers published in English.
The complete search strategy is detailed in Multimedia
Appendix 1. Reviews in this field and references of the original
papers were also manually checked to identify whether there
were any missed studies.

Inclusion and Exclusion Criteria
Studies describing development or validation models for
predicting future breast cancer risk were included in our study.
The inclusion criteria were as follows: (1) breast cancer risk
prediction model developed using a machine learning algorithm,
(2) mean follow-up period for cohort studies should be longer
than 1 year, and (3) future breast cancer risk is the assessment
result. The exclusion criteria were as follows: (1) review or
conference or editorial or only published abstracts, (2) the
original full text not available or incomplete information, and
(3) studies with no AUC or C-statistic and its 95% CI. When
papers included the same population, studies with larger sample
size or longer follow-up periods were finally included.

Data Extraction and Study Quality
Two researchers independently collected data on the first author,
publication year, geographic region, study design, study
population, sample size, study period, age of participants, time
point for breast cancer risk prediction, name of the risk
prediction model, number of participants and cancer cases in
test data set, input risk factors, development and verification
methods, and AUC with its 95% CI. The Prediction Model Risk
of Bias Assessment Tool (PROBAST) was used to assess the
risk of bias (ROB) and the clinical applicability of the included
studies [25,26]. Any discrepancies were resolved by consensus
or were consulted with the corresponding author.
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Statistical Analyses
The discrimination value was assessed by AUC, which measures
the machining learning risk prediction model ability to
distinguish the women who will and will not develop breast
cancer. An AUC of 0.5 was considered as no discrimination,
whereas 1.0 indicated perfect discrimination. We calculated the
pooled AUC of the risk models by using DerSimonian and
Laird’s random-effects model [27]. A head-to-head performance
comparison of the studies that developed machine learning
models and those that developed traditional risk factor–based
models can help us understand the performance gain of utilizing
machine learning methods in the same experimental setting.

The Q test and I2 value were employed to evaluate the
heterogeneity among the studies. High values in both tests

(I2>40%, a significant Q test value with P<.05) showed high
levels of inconsistency and heterogeneity. We also calculated
an approximate 95% prediction interval (PI) to depict the extent
of between-study heterogeneity [28]. Sensitivity analysis was
performed to assess the influence of each study on the pooled
effects by omitting each study. The visualized asymmetry of
the funnel plot and Egger regression test were assessed for the
publication bias. Pooled effects were also adjusted using the
Duval and Tweedie trim-and-fill method [29,30]. All statistical
meta-analyses of the predictive performance were performed

using the MedCalc statistical software version 20 (MedCalc
Ltd).

Results

Eligible Papers and Study Characteristics
A total of 937 papers were identified, and 8 studies with 10 data
sets met our inclusion criteria and they were finally included in
the meta-analysis (Figure 1) [7,19-21,31-34]. The primary
characteristics of the included studies are summarized in Table
1. Totally, 218,100 patients were included in this review. Most
of these patients were from America and Europe; only 1 data
set’s participants were from Taiwan, China. Six studies
[7,20,21,32-34] predicted short-term (≤5 year) breast cancer
risk, while 2 studies [19,31] predicted long-term (future or
lifetime) risk. The characteristics and performance of the
machine learning–based breast cancer risk prediction models
are summarized in Table 2. Most of the machine learning
prediction models were development models; only 1 study [7]
used 3 different ethnic groups for external validation. Neural
network was the most common machine learning method for
the development of breast cancer risk prediction models. Only
1 neural network–based model incorporated genetic risk factors
[7] and 6 neural network–based models incorporated imaging
features [7,20,31,32].

Figure 1. Flowchart of the study selection in this systematic review. AUC: area under the curve.
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Table 1. Characteristics of the included studies on the machine learning–based breast cancer risk prediction models.

Cancers in test
data set (n)

Participants in
test data set (n)

Breast can-
cer risk

Study

period

Age
(years)

Sample sizeStudy population,

geographic location

Study designStudy ID

58870055 years2009-201640-8070,972Massachusetts General
Hospital, USA

Retrospective
study

Yala et al
[7], 2021

141373535 years2008-201640-747353Cohort of Screen-Aged
Women, Karolinska
University Hospital,
Sweden

Retrospective
study

Yala et al
[7], 2021

24413,3565 years2010-201140-7013,356Chang Gung Menoral
Hospital, Taiwan

Retrospective
study

Yala et al
[7], 2021

491136,146Lifetime1998-201720-8045,110Oncogenetic Unit,
Geneva University
Hospital,

Sweden

Retrospective
study

Ming et al
[19], 2020

9611645 years2011-201340-801183A large tertiary academ-
ic medical center, Mas-
sachusetts General
Hospital, USA

Retrospective
study

Portnoi et al
[20], 2019

26912,9485 years1993-200150-7864,739Prostate, Lung, Colorec-
tal, and Ovarian Cancer
Screening Trial data set,
USA

Prospective studyStark et al
[21], 2019

2782283Future2008-201540-7414,034Cohort of Screen-Aged
Women, Karolinska
University Hospital,
Sweden

Retrospective
study

Dembrower
et al [31],
2020

113226Short-term201341-89226Health Insurance Porta-
bility and Accountabili-
ty Act, USA

Retrospective
case-control
study cohort

Arefan et al
[32], 2020

28399412-36
months

2006—a994University of Oklahoma
Medical Center, USA

Retrospective
study

Tan et al
[33], 2013

461332 years2004-201327-76133Duke University School
of Medicine, USA

Retrospective
study

Saha et al
[34], 2019

aNot available.
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Table 2. Characteristics and performance of the machine learning–based breast cancer risk prediction models.

AUCa (95% CI)Incorporation
of imaging
features

Model input parametersDevelop-
ment/validation
model

Statistical
method

Study ID, model
name

Yala et al [7], 2021

0.62 (0.59-0.66)NoAge, weight, height, menarche age, given birth, menopause
status, hormone replacement therapy usage, BRCA gene,

—cLogistic

regression

Tyrer-Cuz-

ick modelb
ovarian cancer, breast biopsy, family history, hormonal
factors

0.62 (0.60-0.65)YesMammographic featuresDevelopment
model

Logistic

regression

Radiolosit

BI-RADSd

modele

0.64 (0.60-0.68)Yes—Development
model

Convolutional
neural network

Image- and
heatmaps
model

0.73 (0.70-0.77)YesMammographic featuresDevelopment
model

Convolutional
neural network

Imaged-only
deep learn-
ing model

0.72 (0.69-0.76)YesAge, weight, height, menarche age, given birth, menopause
status, hormone replacement therapy usage, BRCA gene,

Development
model

Convolutional
neural network

Hybrid deep
learning
model ovarian cancer, breast biopsy, family history, hormonal

factors

0.76 (0.73-0.79)YesMammographic featuresDevelopment
model

Convolutional
neural network

Mirai with-
out risk fac-

tors modelf

0.76 (0.73-0.80)YesAge, weight, height, menarche age, given birth, menopause
status, hormone replacement therapy usage, BRCA gene,

Development
model

Convolutional
neural network

Mirai with
risk factors
model ovarian cancer, breast biopsy, family history, hormonal

factors

Yala et al [7], 2021

0.71 (0.69-0.73)YesMammographic featuresValidation

model

Convolutional
neural network

Imaged-only
deep learn-
ing model

0.78 (0.76-0.80)YesMammographic featuresValidation

model

Convolutional
neural network

Mirai with-
out risk fac-

tors modelf

Yala et al [7], 2021

0.70 (0.66-0.73)YesMammographic featuresValidation

model

Convolutional
neural network

Imaged-only
deep learn-
ing model

0.79 (0.75-0.82)YesMammographic featuresValidation

model

Convolutional
neural network

Mirai with-
out risk fac-

tors modelf

Ming et al [19], 2020

0.639hNoFamily pedigree, age, age at menarche, age at first live
birth, parity, age at menopause, Ashkenazi Jewish ancestry,

—Logistic

regression
BOADICEAg

model
ovarian, prostate, pancreatic, contralateral, and
lung/bronchus cancer diagnosis and age of onset, estrogen
receptor status, progesterone receptor status, HER2 status,
and BRCA/BRCA2 germline pathogenic variant

0.851 (0.847-
0.856)

NoFamily pedigree, age, age at menarche, age at first live
birth, parity, age at menopause, Ashkenazi Jewish ancestry,
ovarian, prostate, pancreatic, contralateral, and

Development
model

Markov Chain
Monte Carlo

Machine
learning-
Markov

lung/bronchus cancer diagnosis and age of onset, estrogenChain Monte
receptor status, progesterone receptor status, HER2 status,
and BRCA/BRCA2 germline pathogenic variant

Carlo gener-
alized linear
mixed model
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AUCa (95% CI)Incorporation
of imaging
features

Model input parametersDevelop-
ment/validation
model

Statistical
method

Study ID, model
name

0.889 (0.875-
0.903)

NoFamily pedigree, age, age at menarche, age at first live
birth, parity, age at menopause, Ashkenazi Jewish ancestry,
ovarian, prostate, pancreatic, contralateral, and
lung/bronchus cancer diagnosis and age of onset, estrogen
receptor status, progesterone receptor status, HER2 status,
and BRCA/BRCA2 germline pathogenic variant

Development
model

Adaptive

boosting

Machine
learning-
adaptive
boosting

modele,f

0.843 (0.838-
0.849)

NoFamily pedigree, age, age at menarche, age at first live
birth, parity, age at menopause, Ashkenazi Jewish ancestry,
ovarian, prostate, pancreatic, contralateral, and
lung/bronchus cancer diagnosis and age of onset, estrogen
receptor status, progesterone receptor status, HER2 status,
and BRCA/BRCA2 germline pathogenic variant

Development
model

Random

forest

Machine
learning-ran-
dom forest
model

Portnoi et al [20], 2019

0.558 (0.492-
0.624)

NoAge, weight, height, breast density, age at menarche, age
at first live birth, menopause, hormone replacement therapy
usage, had gene mutation, had ovarian cancer, had breast
biopsy, number of first-degree relatives who have had
breast cancer, race/ethnicity, history of breast cancer, and
background parenchymal enhancement on magnetic reso-
nance images

Development
model

Logistic

regression

Traditional
risk factors
logistic re-
gression

modele

0.638 (0.577-
0.699)

YesFull-resolution magnetic resonance imagesDevelopment
model

Convolutional
neural network

Magnetic
resonance
image-deep
convolution-
al neural net-

work modelf

0.493 (0.353-
0.633)

NoAge, weight, height, breast density, age at menarche, age
at first live birth, menopause, hormone replacement therapy
usage, had gene mutation, had ovarian cancer, had breast
biopsy, number of first-degree relatives who have had
breast cancer, and race/ethnicity, and history of breast
cancer

—Logistic

regression

Tyrer-Cuz-

ick modelb

Stark et al [21], 2019

0.608 (0.574-
0.643)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer,
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Artificial neural
network

Feed-for-
ward artifi-
cial neural
network
model

0.613 (0.579-
0.647)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Logistic

regression

Logistic re-
gression

modele,f

0.589 (0.555-
0.623)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Gaussian naive
Bayes

Gaussian
naive Bayes
model
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AUCa (95% CI)Incorporation
of imaging
features

Model input parametersDevelop-
ment/validation
model

Statistical
method

Study ID, model
name

0.508 (0.496-
0.521)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Decision treeDecision tree
model

0.613 (0.579-
0.646)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Linear discrimi-
nant analysis

Linear dis-
criminant
analysis
model

0.518 (0.484-
0.551)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

Development
model

Support vector
machine

Support vec-
tor machine
model

0.563 (0.528-
0.597)

NoAge, age at menarche, age at first live birth, number of
first-degree relatives who have had breast cancer, and
race/ethnicity, age at menopause, an indicator of current
hormone usage, number of years of hormone usage, BMI,
pack years of cigarettes smoked, years of birth control us-
age, number of liver births, an indicator of personal prior
history of cancer

—Logistic

regression

Breast Can-
cer Risk Pre-
diction Tool

modelb

Dembrower et al [31], 2020

0.65 (0.63-0.66)YesMammographic images, the age at image acquisition, ex-
posure, tube current, breast thickness, and compression
force

Development
model

Deep neural
network

Deep learn-
ing risk
score model

0.58 (0.57-0.60)YesMammographic featuresDevelopment
model

Logistic

regression

Dense area

modelb,e

0.54 (0.52-0.56)YesMammographic featuresDevelopment
model

Logistic

regression

Percentage
density mod-

elb

0.66 (0.64-0.67)YesMammographic images, the age at image acquisition, ex-
posure, tube current, breast thickness, and compression
force

Development
model

Deep neural
network

Deep learn-
ing risk
score +
dense area +
percentage
density mod-

elf

Arefan et al [32], 2020

0.62 (0.58-0.66)YesImaging features of the whole-breast regionDevelopment
model

Convolutional
neural network

End-to-end
convolution-
al neural net-
work model
using
GoogLeNet

0.67 (0.61-0.73)YesImaging features of the dense breast region onlyDevelopment
model

Convolutional
neural network

End-to-end
convolution-
al neural net-
work model
using
GoogLeNet
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AUCa (95% CI)Incorporation
of imaging
features

Model input parametersDevelop-
ment/validation
model

Statistical
method

Study ID, model
name

0.64 (0.58-0.70)YesImaging features of the whole-breast regionDevelopment
model

Linear discrimi-
nant analysis

GoogLeNet
combining a
linear dis-
criminant
analysis
model

0.72 (0.67-0.76)YesImaging features of the dense breast region onlyDevelopment
model

Linear discrimi-
nant analysis

GoogLeNet
combining a
linear dis-
criminant
analysis

modele,f

0.54 (0.49-0.59)YesPercentage breast densityDevelopment
model

Logistic

regression

Area-based
percentage
breast densi-

ty modelb

Tan et al [33], 2013

0.725 (0.689-
0.759)

YesAge, family history, breast density, mean pixel value dif-
ference, mean value of short run emphasis; maximum value
of short run emphasis, standard deviation of the r-axis cu-
mulative projection histogram, standard deviation of the
y-axis cumulative projection histogram, median of the x-
axis cumulative projection histogram, mean pixel value,
mean value of short run low gray-level emphasis, and me-
dian of the x-axis cumulative projection histogram

Validation

model

Support vector
machine

classification

Support vec-
tor machine
classification

modele,f

Saha et al [34], 2019

0.59 (0.49-0.70)Yes—Development
model

Logistic

regression

Mean reader
scores mod-

elb

0.60 (0.51-0.69)Yes—Development
model

Logistic

regression

Median read-
er scores

modelb

0.63 (0.52-0.73)YesMagnetic resonance image background parenchymal en-
hancement features were based on the fibroglandular tissue
mask on the fat saturated sequence

Development
model

Machine learn-
ing logistic

regression

Machine
learning
model 1

0.70 (0.60-0.79)YesMagnetic resonance image background parenchymal en-
hancement features were based on the fibroglandular tissue
segmentation using the non–fat-saturated sequence

Development
model

Machine learn-
ing logistic

regression

Machine
learning

model 2e,f

aAUC: area under the curve.
bTraditional risk factor–based optimal breast cancer risk prediction model.
cNot available.
dBI-RADS: Breast Imaging-Reporting And Data System.
eNonneural network–based optimal breast cancer risk prediction model.
fMachine learning–based optimal breast cancer risk prediction model.
gBOADICEA: Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm.
h95% CI not available.

Study Quality
PROBAST was used to assess the quality of the included studies
in terms of both ROB and clinical applicability. All 8 studies
demonstrated a low applicability risk; only 1 of the papers had
low ROB [7], indicating that most machine learning models
have technical pitfalls (Table 3). The other 7 studies that had
high ROB were mostly in the domain of analysis, with several

reasons as follows: (1) no information was provided on how
the continuous/categorical predictors handle or they were
handled unreasonably, (2) complexities in the data were not
assessed in the final analysis, (3) model calibration was not
assessed or lack of standardized evaluation of model calibration,
(4) the calculation formulae of the predictors and their weights
were not reported in the final model, and (5) insufficient number
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of participants was used to develop the models. The details are
shown in Multimedia Appendix 2. Only 3 neural network–based
models were developed by bootstrap and cross-validation to

evaluate the discrimination ability of the prediction model,
whereas other machine learning models and regression models
were developed by using random split or nonrandom split.

Table 3. Presentation of the Prediction Model Risk of Bias Assessment Tool results of the included studies.

OverallApplicabilityRisk of biasStudy

ApplicabilityRisk of biasOutcomePredictorsParticipantsAnalysisOutcomePredictorsParticipants

LRLRLRLRLRHRbLRLRLRaYala et al [7], 2021

LRHRLRLRLRHRLRHRLRMing et al [19], 2020

LRHRLRLRLRHRLRLRLRPortnoi et al [20], 2019

LRHRLRLRLRHRLRLRLRStark et al [21], 2019

LRHRLRLRLRHRLRLRLRDembrower et al [31],
2020

LRHRLRLRLRHRLRLRLRArefan et al [32], 2020

LRHRLRLRLRHRLRLRLRTan et al [33], 2013

LRHRLRLRLRHRLRLRLRSaha et al [34], 2019

aLR: low risk.
bHR: high risk.

Predictive Performance
The pooled AUC of the machine learning–based optimal breast
cancer risk prediction model reported in each included study
was 0.73 (95% CI 0.66-0.80; approximate 95% PI 0.56-0.96),
with a high level of heterogeneity between studies (Q=576.07,

I2=98.44%; P<.001) (Figure 2). We also performed
metaregression, and the results showed that the heterogeneity
remains high and essentially unchanged. Sensitivity analysis
showed that the pooled AUC and 95% CI were not significantly
altered before and after the omission of each data set, with a

range of 0.72 (95% CI 0.67-0.76; approximate 95% PI
0.60-0.85) to 0.75 (95% CI 0.68-0.82; approximate 95% PI
0.57-0.98) (Multimedia Appendix 3). The results of
head-to-head comparison of the performance difference in both
types of models trained by the same data set showed that the
pooled AUC of machine learning prediction models (0.69, 95%
CI 0.63-0.74; approximate 95% PI 0.57-0.83; Figure 3A) was
higher than that of the traditional risk factor–based models, with
the range from 0.56 (95% CI 0.55-0.58; approximate 95% PI
0.51-0.62) to 0.58 (95% CI 0.57-0.59; approximate 95% PI
0.51-0.62) (all Pheterogeneity<.001) (Figures 3B-3E).

Figure 2. Forest plot of the pooled area under the curve of the machine learning–based optimal breast cancer risk prediction model [7,19-21,31-34].
AUC: area under the curve.
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Figure 3. Forest plot of the pooled area under the curve in head-to-head comparisons of (A) machine learning models and (B,C,D,E) traditional risk
factor–based models [7,20,21,31,32,34]. AUC: area under the curve.

The pooled AUC of neural network–based breast cancer risk
prediction models was 0.71 (95% CI 0.65-0.77; approximate

95% PI 0.57-0.87; Q=131.42; I2=95.43%; P<.001) (Figure 4A),
which was higher than that of nonneural network–based optimal
risk prediction models (0.68, 95% CI 0.56-0.81; approximate

95% PI 0.53-0.81; Q=1268.99; I2=99.45%; P<.001) (Figure
4B). When stratified by the presence or absence of incorporation
of imaging features, the pooled AUCs in models incorporated
with imaging features and those in models not incorporated

with imaging features were 0.73 (95% CI 0.67-0.79) and 0.61
(95% CI 0.57-0.64) (Pheterogeneity=.001), respectively (Table 4).
Subgroup analysis also showed that the pooled AUC in models
not incorporated with genetic risk factors was not significantly
lower than that in models incorporated with genetic risk factors
(0.71 vs 0.76, respectively; Pheterogeneity=.12) (Table 4). Our
results also showed that models predicting short-term (≤5 year)
breast cancer risk had a slightly higher pooled AUC than those
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predicting long-term risk (0.72 vs 0.66, respectively), although
the difference was not significant (Pheterogeneity=.10) (Table 4).

The funnel plot indicated that there was no publication bias,
with an Egger regression coefficient of –3.85 (P=.46)

(Multimedia Appendix 4). According to the trim-and-fill
method, 2 studies had to be trimmed, and the adjusted pooled
AUC was 0.75 (95% CI 0.69-0.82) after trimming (Multimedia
Appendix 4).

Figure 4. Forest plot of the pooled area under the curve of the (A) neural network–based breast cancer risk prediction model and (B) nonneural
network–based optimal risk prediction model [7,20,21,31,32]. AUC: area under the curve.

Table 4. Subgroup analysis.

Pheterogeneity valueArea under the curve (95% CI)Model, subgroup

.001Model with/without imaging features

0.73 (0.67-0.79)Model incorporated with imaging features

0.61 (0.57-0.64)Model not incorporated with imaging features

.12Model with/without genetic risk factors

0.76 (0.73-0.80)Model incorporated with genetic risk factors

0.71 (0.65-0.77)Model not incorporated with genetic risk factors

.10Model prediction of risk

0.72 (0.65-0.78)Model predicting short-term risk

0.66 (0.64-0.67)Model predicting long-term risk

Discussion

Principal Findings
In this meta-analysis, 8 studies showed that the pooled AUC of
machine learning–based breast cancer risk prediction models
was 0.73 (95% CI 0.66-0.80). The results of head-to-head
comparison of the performance difference in 2 types of models
trained by the same data set showed that machine learning
models had a slightly higher advantage than the traditional risk
factor–based models in predicting future breast cancer risk.

Machine learning approaches have the potential to achieve better
accuracy and incorporate different types of information,
including traditional risk factors, imaging features, genetic data,
and clinical factors. However, of note, the predictive ability of
the machine learning models showed substantial heterogeneity
among the studies included in this review.

Machine learning represents a data-driven method; it has the
ability to learn from past examples and detect hard-to-discern
patterns from large and noisy data sets and model nonlinear and
more complex relationships by employing a variety of statistical,
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probabilistic, and optimization techniques [35]. This capability
of machine learning algorithms offers a possibility for the
investigation and development of risk prediction and diagnostic
prediction models in cancer research [36]. It is evident that the
use of machine learning methods can improve our understanding
of cancer occurrence and progression [35,37]. Thus, developing
machine learning–based breast cancer risk prediction models
with improved discriminatory power can stratify women into
different risk groups, which are useful for guiding the choice
for personalized breast cancer screening in order to achieve a
good balance in the risk benefit and cost benefit for breast cancer
screening.

In our stratified analysis, neural network–based breast cancer
risk prediction models incorporating imaging features showed
superior performance. This result suggests that the incorporation
of imaging inputs in machine learning models can deliver more
accurate breast cancer risk prediction. Previous breast cancer
risk assessments have already recognized the importance of
imaging features in mammography [10,12], but the existing
model was based on the underlying pattern that was assessed
visually by radiologists, and the whole image was subjectively
summarized as a density score on mammography as the model
input [38]. It is unlikely that the single value of the density score
would be able to take maximum advantage of the imaging
features. The other human-specified features may not be able
to capture all the risk-relevant information in the image.
However, the flexibility of the neural networks might allow the
extraction of more information from both finer patterns as well
as the overall image characteristics, which can improve the
accuracy of the prediction models.

The findings in this study showed that neural network–based
models that predicted short-term (≤5 year) breast cancer risk
had slightly better discriminatory accuracy than models
predicting long-term risk, although confidence intervals
overlapped. Improvement of public health literacy and the
popularization of healthy lifestyles motivated more opportunities
for women in their lifetime to participate in breast cancer
prevention and screening and modify their identified modifiable
risk factors associated with breast cancer. Unlike many currently
known risk factors that do not change and maintain constant
risk values, short-term risk factors may change over time. The
cumulative effect of these changes may reduce the incidence
of breast cancer. Therefore, it is unreasonable to predict the
long-term risk of breast cancer by using these risk factors, which
may lead to high probability of false-positive recall.

Model Reliability and Clinical Feasibility
Our study showed several issues regarding machine learning
model reliability. The PROBAST analysis indicated that
machine learning models have technical pitfalls. First, most
machine learning models did not report sufficient statistical
analysis information, and only few studies [7,31] provided the
details for model reproduction. Second, many machine learning
models showed a poor calibration analysis, indicating that the
assessment of their utility was problematic, leading to inaccurate
evaluation of the future breast cancer risk. Third, only 1 study
[7] reported machine learning models that were externally
validated in different ethnic populations. Six neural

network–based models incorporated many complex imaging
features, which may cause clinicians or public physicians to be
unable to quickly and conveniently calculate the breast cancer
risk by machine learning models manually. This may also be
why few studies carry out external validation of the machine
learning models. Due to the complexity of the machine learning
model algorithms, many studies included many different types
of predictors into the model construction, which may lead to an
overfitting of the machine learning models [39]. However, only
few development studies [7,21,34] reported the details for these
predictor selection processes, which may lower the clinical
feasibility of the machine learning models.

Limitations
This review had several limitations. First, most of the included
studies [19,31-34] did not provide the expected/observed ratio
or other indicators that could evaluate the calibration of the risk
prediction model; therefore, this meta-analysis could not
comprehensively review the calibration of the machine
learning–based breast cancer risk prediction models. Second,
substantial heterogeneity was presented in this systematic
review, which impeded us from making further rigorous
comparisons. The heterogeneity can be partially explained but
could not be markedly diminished by different risk predicting
times, with or without the incorporation of imaging features
and genetic risk factors. The results of meta-analysis can only
be interpreted carefully within the context. Third, the pooled
results of the machine learning prediction model were analyzed
based on most of the included studies that had high ROB
[19-21,31-34]. The reason that these studies are rated as high
ROB were that complexities in the data were not assessed or
the calculation formulas of the predictors and their weights were
not reported in the final model. These parameters, the so-called
“black boxes,” are almost never presented in the original studies.
Moreover, we performed a head-to-head fair comparison of the
performance difference between 2 types of models trained by
same data set, and the results showed that machine learning
models had a slightly higher advantage in predicting future
breast cancer risk. Lastly, we mainly focus on the statistical
measures of model performance and did not discuss how to
meta-analyze the clinical measures of performance such as net
benefit. Hence, further research on how to meta-analyze net
benefit estimates should be performed.

Conclusions
In summary, machine learning–based breast cancer risk
prediction models had a slightly higher advantage in predicting
future breast cancer risk than traditional risk factor–based
models in head-to-head comparisons of the performance under
the same experimental settings. However, machine
learning–based breast cancer risk prediction models had some
technical pitfalls, and their clinical feasibility and reliability
were unsatisfactory. Future research may be worthwhile to
obtain individual participant data to investigate in more detail
how the machine learning models perform across different
populations and subgroups. We also suggest that they could be
considered to be implemented by pooling with breast cancer
screening programs and to help developing optimal screening
strategies, especially screening intervals.
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